
IJSRSET1621103 | Received: 16 February 2016 | Accepted: 22 February 2016 | January-February 2016 [(2)1: 382-389]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

382

Compare and Contrast the Packet Loss between Different Nodes

within Same Link at Particular Interval of Time and at Specific Time
Dr. Rajdev Tiwari, Parul Sirohi

Department of Computer Science and Engineering, Noida Institute of Engineering and Technology. Uttar Pradesh, India

ABSTRACT

Measurement and estimation of packet loss characteristics are challenging due to the relatively rare occurrence and

typically short duration of packet loss episodes. While active probe tools are commonly used to measure packet loss

on end-to end paths, there has been little analysis of the accuracy of these tools or their impact on the network. The

objective of our study is to understand how to measure packet loss episodes accurately within same link within

particular interval of time. We begin by testing the capability of standard end-to-end measurements of loss in a

controlled laboratory environment using network simulator 2.35. Our tests show that loss characteristics reported

from different nodes within same link at different interval of time can be quite accurate over different nodes within

same link at specific interval of time. Motivated by these observations, we introduce a new algorithm for packet loss

measurement that is designed to overcome the deficiencies in standard tools.

Keywords: TCP Congestion Window, Front End Server, Congestion Control, Droptail Mechanism, Source Code.

I. INTRODUCTION

TCP Congestion Control

TCP uses a round-trip delay estimate for its adaptive

windowing scheme to transmit data reliably over an

unreliable network with time varying bandwidth.

Similarly a smoothed variance (estimated as mean

difference to avoid square root calculations in the kernel)

is also maintained (Tahoe TCP). If an

acknowledgement for a segment is not received within

the timeout, it is re-transmitted. TCP uses a congestion

window in the sender side to do congestion avoidance.

The congestion window indicates the maximum amount

of data that can be sent out on a connection without

being acknowledged. TCP detects congestion when it

fails to receive an acknowledgement for a packet within

the estimated timeout. In such a situation, it decreases

the congestion window to one maximum segment size

(MSS), and under other cases it increases the congestion

window by one MSS. There also exists a congestion

window threshold, which is set to half the congestion

window size at the time when a re-transmit was required.

The inherent assumption in this mechanism is that lack

of an acknowledgement is due to network congestion. If

a packet, however, is lost by the network for reasons

other than network congestion, then waiting for the

timer to run out is wasteful. This is a situation that may

happen quite frequently in wireless networks, and so to

improve TCP performance, it is needed to pre-empt re-

transmissions before waiting for the timer to run out.

To guard against this scenario, Reno TCP [7] uses Fast

Re-transmit and Fast Recovery algorithms. Both these

algorithms depend on counting duplicate

acknowledgements sent by the data receiver in response

to each additional segment received following some

missing data. Fast Re-transmit detects loss of a segment

when three duplicate acknowledgements are received,

and re-transnits it. Fast Recovery algorithm attempts to

estimate how much data is outstanding in the network by

counting duplicate acknowledgements.

II. METHODS AND MATERIAL

2.1 Front End Server

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

383

The front-end server is an extension of the back-end

server and is designed to provide scalability. Multiple

FEs can be connected to a BE and each FE can have

multiple clients connected to it in a distributed setup.

The main function performed by the FE is to channel the

requests received from the clients. The FE takes care of

generating the database views through database read

operations using a completely stateless architecture. This

helps in providing the accurate information at all times.

Components Overview

Client Communication Layer

 The client communication layer provides option to

choose from a range of transport protocols, such as TCP,

RMI, HTTP, HTTPS, SSL, etc. To support various set

of clients, such as the Java (session based) client, the

HTML client, the RMI (Client API based) clients, etc.,

the client communication has a rich set of components

with each receiving and decoding the requests from the

corresponding clients and forwarding them to the

Session Beans.

Transport Provider interface & Client Session

Forwarders Interacts with the Java client and redirects

the read requests to the Session Beans and the database

commit requests to the back-end server.

Web Container interface: Provides Web access to the

clients and handles all the requests from the HTML

client and forwards the request to the Session Beans.

 RMI server API interface: Provides APIs for

generation of custom views and handles all read

operations for the RMI Client APIs using the Session

Beans.

 Session Bean Layer

 The Session Bean layer forms the core business logic of

the front-end server. This stateless EJB deployable

Session Bean layer generates views from the database

(Custom Views) based on the client requests. Forwards

the commit requests to the back-end server using the

front-end RMI proxy APIs.

Back-End Communication Layer

The back-end communication layer forwards the

database commit request generated from the clients to

the back-end server and notifies the subscribed clients

for any updates from the back-end server. This layer too

has different set of interfaces for communicating with

the back-end server.

Updates Handler handles all the updates or notifications

from the back-end server and forwards them to the

clients subscribed for receiving such notifications.

Back-end Socket Interface forwards the database

commit requests to the corresponding back-end server

through the socket connection.

RMI Proxy API forwards the write requests to the

corresponding back-end server module RMI API

counterpart.

Figure 1: End Server

Maintaining Security Between Front-End and Back-

End Servers

A front-end server uses the Database Wire Protocol

(DWP) to communicate with a back-end server. Because

DWP uses HTTP as the transport mechanism, Calendar

Server provides authentication for DWP connections

between front-end and back-end servers using the

configuration parameters in Table 1 and Table 2.

https://docs.oracle.com/cd/E19559-01/817-5697/csagCLDPlugin.html#wp44728
https://docs.oracle.com/cd/E19559-01/817-5697/csagCLDPlugin.html#wp44107

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

384

These parameters are optional and by default are not

included in the ics. conf file. To use authentication for

DWP connections, you must add the required parameters

to the ics. conf file on each front-end and back-end

server.

Table 1 Back-end Configuration Parameters for

Authentication of a DWP Connection

Parameter Description

service.dwp.admin.userid On a back-end server,

specifies the user ID that is

used to authenticate a DWP

connection. If a back-end

server does not specify a

user ID, no authentication is

performed.

service.dwp.admin.cred On a back-end server,

specifies the password that

is used to authenticate a

DWP connection. If a back-

end server does not specify a

password, no authentication

is performed.

Table 2 Front-end Configuration Parameters for

Authentication of a DWP Connection

Parameter Description

caldb.dwp.server.back-

end-server.admin

On a front-end server,

specifies the user ID that is

used for authentication for a

DWP connection to a back-

end server, where back-end-

server is the name of the

server.

caldb.dwp.server.back-

end-server.cred

On a front-end server,

specifies the password that is

used for authentication for a

DWP connection to a back-

end server, where back-end-

server is the name of the

server.

Figure 2 : Server Architecture

2.2 Congestion Control

The final main aspect of TCP is congestion control.

TCP uses a number of mechanisms to achieve high

performance and avoid congestion collapse, where

network performance can fall by several orders of

magnitude. These mechanisms control the rate of data

entering the network, keeping the data flow below a rate

that would trigger collapse. They also yield an

approximately max-min fair allocation between

flows.[13]

Acknowledgments for data sent, or lack of

acknowledgments, are used by senders to infer network

conditions between the TCP sender and receiver.

Coupled with timers, TCP senders and receivers can

alter the behavior of the flow of data. This is more

generally referred to as congestion control and/or

network congestion avoidance.

Modern implementations of TCP contain four

intertwined algorithms: Slow-start, congestion

avoidance, fast retransmit, and fast recovery (RFC

5681).

In addition, senders employ a retransmission timeout

(RTO) that is based on the estimated round-trip time

(or RTT) between the sender and receiver, as well as the

variance in this round trip time. The behavior of this

timer is specified in RFC 6298. There are subtleties in

the estimation of RTT. For example, senders must be

https://en.wikipedia.org/wiki/Congestion_control
https://en.wikipedia.org/wiki/Congestive_collapse
https://en.wikipedia.org/wiki/Max-min_fairness
https://en.wikipedia.org/wiki/Slow-start
https://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm
https://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm
https://en.wikipedia.org/wiki/Fast_retransmit
https://en.wikipedia.org/w/index.php?title=Fast_recovery&action=edit&redlink=1
https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc5681
https://en.wikipedia.org/wiki/Round-trip_time
https://tools.ietf.org/html/rfc6298

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

385

careful when calculating RTT samples for retransmitted

packets; typically they use Karn's Algorithm or TCP

timestamps (see RFC 1323). These individual RTT

samples are then averaged over time to create a

Smoothed Round Trip Time (SRTT) using Jacobson's

algorithm. This SRTT value is what is finally used as the

round-trip time estimate.

Enhancing TCP to reliably handle loss, minimize errors,

manage congestion and go fast in very high-speed

environments are ongoing areas of research and

standards development. As a result, there are a number

of TCP congestion avoidance algorithm variations.

1) Maximum segment size

The maximum segment size (MSS) is the largest

amount of data, specified in bytes, that TCP is willing to

receive in a single segment. For best performance, the

MSS should be set small enough to avoid IP

fragmentation, which can lead to packet loss and

excessive retransmissions. To try to accomplish this,

typically the MSS is announced by each side using the

MSS option when the TCP connection is established, in

which case it is derived from the maximum

transmission unit (MTU) size of the data link layer of

the networks to which the sender and receiver are

directly attached. Furthermore, TCP senders can use

path MTU discovery to infer the minimum MTU along

the network path between the sender and receiver, and

use this to dynamically adjust the MSS to avoid IP

fragmentation within the network.[15]

MSS announcement is also often called "MSS

negotiation". Strictly speaking, the MSS is not

"negotiated" between the originator and the receiver,

because that would imply that both originator and

receiver will negotiate and agree upon a single, unified

MSS that applies to all communication in both directions

of the connection. In fact, two completely independent

values of MSS are permitted for the two directions of

data flow in a TCP connection.[17] This situation may

arise, for example, if one of the devices participating in a

connection has an extremely limited amount of memory

reserved (perhaps even smaller than the overall

discovered Path MTU) for processing incoming TCP

segments.[4]

2) Selective acknowledgments

Relying purely on the cumulative acknowledgment

scheme employed by the original TCP protocol can lead

to inefficiencies when packets are lost. For example,

suppose 10,000 bytes are sent in 10 different TCP

packets, and the first packet is lost during transmission.

In a pure cumulative acknowledgment protocol, the

receiver cannot say that it received bytes 1,000 to 9,999

successfully, but failed to receive the first packet,

containing bytes 0 to 999. Thus the sender may then

have to resend all 10,000 bytes.

To alleviate this issue TCP employs the selective

acknowledgment (SACK) option, defined in RFC 2018,

which allows the receiver to acknowledge discontinuous

blocks of packets which were received correctly, in

addition to the sequence number of the last contiguous

byte received successively, as in the basic TCP

acknowledgment. The acknowledgement can specify a

number of SACK blocks, where each SACK block is

conveyed by the starting and ending sequence numbers

of a contiguous range that the receiver correctly

received. In the example above, the receiver would send

SACK with sequence numbers 1000 and 9999. The

sender would accordingly retransmit only the first

packet (bytes 0 to 999).

A TCP sender can interpret an out-of-order packet

delivery as a lost packet. If it does so, the TCP sender

will retransmit the packet previous to the out-of-order

packet and slow its data delivery rate for that

connection. The duplicate-SACK option, an extension to

the SACK option that was defined in RFC 2883, solves

this problem. The TCP receiver sends a D-ACK to

indicate that no packets were lost, and the TCP sender

can then reinstate the higher transmission-rate.

The SACK option is not mandatory, and comes into

operation only if both parties support it. This is

negotiated when a connection is established. SACK uses

the optional part of the TCP header (see TCP segment

structure for details). The use of SACK has become

widespread — all popular TCP stacks support it.

Selective acknowledgment is also used in Stream

Control Transmission Protocol (SCTP).

https://en.wikipedia.org/wiki/Karn%27s_Algorithm
https://tools.ietf.org/html/rfc1323
https://en.wikipedia.org/wiki/Van_Jacobson
https://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm
https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/IP_fragmentation
https://en.wikipedia.org/wiki/IP_fragmentation
https://en.wikipedia.org/wiki/MTU_%28networking%29
https://en.wikipedia.org/wiki/MTU_%28networking%29
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/Path_MTU_discovery
../../nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm#cite_note-17
https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc2883
../../nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm#TCP_segment_structure
../../nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm#TCP_segment_structure
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

386

3) Window scaling

Main article: TCP window scale option

For more efficient use of high bandwidth networks, a

larger TCP window size may be used. The TCP window

size field controls the flow of data and its value is

limited to between 2 and 65,535 bytes.

Since the size field cannot be expanded, a scaling factor

is used. The TCP window scale option, as defined in

RFC 1323, is an option used to increase the maximum

window size from 65,535 bytes to 1 gigabyte. Scaling up

to larger window sizes is a part of what is necessary for

TCP tuning.[4]

The window scale option is used only during the TCP 3-

way handshake. The window scale value represents the

number of bits to left-shift the 16-bit window size field.

The window scale value can be set from 0 (no shift) to

14 for each direction independently. Both sides must

send the option in their SYN segments to enable window

scaling in either direction.[5]

Some routers and packet firewalls rewrite the window

scaling factor during a transmission. This causes sending

and receiving sides to assume different TCP window

sizes. The result is non-stable traffic that may be very

slow. The problem is visible on some sites behind a

defective router.[18]

2.3 DROP TAIL

Tail Drop, or Drop Tail, is a very simple queue

management algorithm used by Internet routers, e.g. in

the network schedulers, and network switches to decide

when to drop packets. In contrast to the more complex

algorithms like RED and WRED, in Tail Drop the traffic

is not differentiated. Each packet is treated identically.

With tail drop, when the queue is filled to its maximum

capacity, the newly arriving packets are dropped until

the queue has enough room to accept incoming

traffic.[5]

The name arises from the effect of the policy on

incoming datagrams. Once a queue has been filled, the

router begins discarding all additional datagrams, thus

dropping the tail of the sequence of datagrams. The loss

of datagrams causes the TCP sender to enter slow-start,

which reduces throughput in that TCP session until the

sender begins to receive acknowledgements again and

increases its congestion window. A more severe problem

occurs when datagrams from multiple TCP connections

are dropped, causing global synchronization; i.e. all of

the involved TCP senders enter slow-start.[5] This

happens because, instead of discarding many segments

from one connection, the router would tend to discard

one segment from each connection.

III. RESULTS

[a]

[b]

Figure 3: Snapshot of the System

Source Code

#-------Event scheduler object creation--------#

set ns [new Simulator]

#---------- CREATING NAM OBJECTS -----------------#

set nf [open drop3.nam w]

$ns namtrace-all $nf

#Open the trace file

set nt [open drop3.tr w]

https://en.wikipedia.org/wiki/TCP_window_scale_option
https://en.wikipedia.org/wiki/TCP_window_scale_option
https://tools.ietf.org/html/rfc1323
https://en.wikipedia.org/wiki/TCP_tuning
../../nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm#cite_note-18
https://en.wikipedia.org/wiki/Queue_%28data_structure%29
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Router_%28computing%29
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Packet_%28information_technology%29
https://en.wikipedia.org/wiki/Random_early_detection
https://en.wikipedia.org/wiki/Weighted_random_early_detection
https://en.wiktionary.org/wiki/differentiation#Pronunciation
https://en.wikipedia.org/wiki/Packet_%28information_technology%29
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Slow-start
https://en.wikipedia.org/wiki/Acknowledgement_%28data_networks%29
https://en.wikipedia.org/wiki/Global_synchronization
https://en.wikipedia.org/wiki/Protocol_data_unit

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

387

$ns trace-all $nt

set proto rlm

#----------------COLOR DESCRIPTION---------------#

$ns color 1 red

$ns color 2 blue

$ns color 3 yellow

$ns color 4 cyan

$ns color 5 maroon

--CREATING CLIENT - ROUTER -ENDSERVER NODES----#

set Client1 [$ns node]

set Client2 [$ns node]

set Client3 [$ns node]

set Client4 [$ns node]

set Router1 [$ns node]

set Router2 [$ns node]

set Router3 [$ns node]

set Router4 [$ns node]

set Router5 [$ns node]

set Router6 [$ns node]

set Endserver1 [$ns node]

#set Endserver2 [$ns node]

----------CREATING DUPLEX LINK -----------------#

$ns duplex-link $Client1 $Router1 5Mb 50ms DropTail

$ns duplex-link $Client2 $Router1 5Mb 50ms DropTail

$ns duplex-link $Client3 $Router1 5Mb 50ms DropTail

$ns duplex-link $Client4 $Router1 5Mb 50ms DropTail

$ns duplex-link $Router1 $Router2 5Mb 50ms DropTail

$ns duplex-link $Router2 $Router3 150Kb 50ms DropTail

$ns duplex-link $Router3 $Router4 300Kb 50ms DropTail

$ns duplex-link $Router4 $Router5 100Kb 50ms DropTail

$ns duplex-link $Router5 $Router6 300Kb 50ms DropTail

$ns duplex-link $Router6 $Endserver1 300Kb 50ms DropTail

#$ns duplex-link $Router6 $Endserver2 300Kb 50ms DropTail

#-----------CREATING ORIENTATION ----------------#

$ns duplex-link-op $Client1 $Router1 orient down-right

$ns duplex-link-op $Client2 $Router1 orient right

$ns duplex-link-op $Client3 $Router1 orient up-right

$ns duplex-link-op $Client4 $Router1 orient up

$ns duplex-link-op $Router1 $Router2 orient right

$ns duplex-link-op $Router2 $Router3 orient down

$ns duplex-link-op $Router3 $Router4 orient right

$ns duplex-link-op $Router4 $Router5 orient up

$ns duplex-link-op $Router5 $Router6 orient right

$ns duplex-link-op $Router6 $Endserver1 orient up-right

#$ns duplex-link-op $Router6 $Endserver2 orient right

--------------LABELLING ---------------------#

$ns at 0.0 "$Client1 label Client1"

$ns at 0.0 "$Client2 label Client2"

$ns at 0.0 "$Client3 label Client3"

$ns at 0.0 "$Client4 label Client4"

$ns at 0.0 "$Router1 label Router1"

$ns at 0.0 "$Router2 label Router2"

$ns at 0.0 "$Router3 label Router3"

$ns at 0.0 "$Router4 label Router4"

$ns at 0.0 "$Router5 label Router5"

$ns at 0.0 "$Router6 label Router6"

$ns at 0.0 "$Endserver1 label Endserver"

#$ns at 0.0 "$Endserver2 label Endserver2"

--------------- CONFIGURING NODES --------------#

$Endserver1 shape hexagon

$Router1 shape box

$Router2 shape square

$Router3 shape square

$Router4 shape square

$Router5 shape square

$Router6 shape square

---------------ESTABLISHING QUEUES -------------#

$ns duplex-link-op $Client1 $Router1 queuePos 0.1

$ns duplex-link-op $Client2 $Router1 queuePos 0.1

$ns duplex-link-op $Client3 $Router1 queuePos 0.5

$ns duplex-link-op $Client4 $Router1 queuePos 0.5

$ns duplex-link-op $Router1 $Router2 queuePos 0.1

$ns duplex-link-op $Router2 $Router3 queuePos 0.1

$ns duplex-link-op $Router3 $Router4 queuePos 0.1

$ns duplex-link-op $Router4 $Router5 queuePos 0.1

$ns duplex-link-op $Router5 $Router6 queuePos 0.5

$ns duplex-link-op $Router6 $Endserver1 queuePos 0.5

----------ESTABLISHING COMMUNICATION ----------#

#----------- CLIENT1 TO ENDSERVER -------------#

set tcp0 [new Agent/TCP]

$tcp0 set maxcwnd_ 16

$tcp0 set fid_ 4

$ns attach-agent $Client1 $tcp0

set sink0 [new Agent/TCPSink]

$ns attach-agent $Endserver1 $sink0

$ns connect $tcp0 $sink0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ns add-agent-trace $tcp0 tcp

$tcp0 tracevar cwnd_

$ns at 0.5 "$ftp0 start"

$ns at 28.5 "$ftp0 stop"

---------------- CLIENT2 TO ENDSERVER ----------#

set tcp1 [new Agent/TCP]

$tcp1 set fid_ 2

$tcp1 set maxcwnd_ 16

$ns attach-agent $Client2 $tcp1

set sink1 [new Agent/TCPSink]

$ns attach-agent $Endserver1 $sink1

$ns connect $tcp1 $sink1

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

388

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

$ns add-agent-trace $tcp1 tcp1

$tcp1 tracevar cwnd_

$ns at 0.58 "$ftp1 start"

$ns at 28.5 "$ftp1 stop"

-------------- CLIENT3 TO ENDSERVER ------------#

set tcp2 [new Agent/TCP]

$tcp2 set fid_ 0

$tcp2 set maxcwnd_ 16

$tcp2 set packetsize_ 100

$ns attach-agent $Client3 $tcp2

set sink2 [new Agent/TCPSink]

$ns attach-agent $Endserver1 $sink2

$ns connect $tcp2 $sink2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp2

$ns add-agent-trace $tcp2 tcp2

$tcp2 tracevar cwnd_

$ns at 0.65 "$ftp2 start"

$ns at 28.5 "$ftp2 stop"

#------------CLIENT4 TO ENDSERVER----------------#

set tcp3 [new Agent/TCP]

$tcp3 set fid_ 3

$tcp3 set maxcwnd_ 16

$tcp2 set packetsize_ 100

$ns attach-agent $Client4 $tcp3

set sink3 [new Agent/TCPSink]

$ns attach-agent $Endserver1 $sink3

$ns connect $tcp3 $sink3

set ftp3 [new Application/FTP]

$ftp3 attach-agent $tcp3

$ns add-agent-trace $tcp3 tcp3

$tcp3 tracevar cwnd_

$ns at 0.60 "$ftp3 start"

$ns at 28.5 "$ftp3 stop"

#------------------Creating drops------------------#

$ns rtmodel-at 2.880511 down $Router3 $Router4

$ns rtmodel-at 2.880511 up $Router3 $Router4

$ns rtmodel-at 7.299242 down $Router5 $Router6

$ns rtmodel-at 7.299242 up $Router5 $Router6

---------------- FINISH PROCEDURE -------------#

proc finish {} {

 global ns nf nt

 $ns flush-trace

 close $nf

 puts "running nam..."

 exec nam drop3.nam &

 exit 0

 }

#Calling finish procedure

$ns at 15.0 "finish"

$ns run

IV. CONCLUSION

This paper is implement by using network simulator tool

2.35 version to show that how packet loss is measured

between 2 network circuit and which one is better by

comparing the trace file of both the result such that 2

networks are created namely 1- packet loss within same

link at particular interval of time and 2- packet loss

between different nodes within same link at specific

interval of time. Finally we are able to prove that packet

loss at particular interval of time is much more effective

as compare to specific interval.

V. REFERENCES

[1] Kompella, K., Rekhter, Y., Berger, L., Link

Bundling in MPLS Tra_c Engineering (TE) IETF

Request for Comments: 4201, 2005.

[2] Vasseur, JP., Leroux, JL., Yasukawa, S., Previdi,

S., Psenak, P., Mabbey, P.Routing Extensions for

Discovery of Multiprotocol (MPLS) Label Switch

Router(LSR) Traffic Engineering (TE) Mesh

Membership IETF Request for Comments:4972,

2007

[3] Andersson, L., Asati, R., Multiprotocol Label

Switching (MPLS) Label Stack Entry: "EXP"

Field Renamed to "Tra_c Class" Field. IETF

Request for Comments:5462, 2009.

[4] Bhatia, M., Jakma, P., Advertising Equal Cost

Multipath routes in BGP, draft-bhatia-ecmp-

routes-in-bgp-02.txt IETF Internet Draft, 2006.

[5] Lin, W., Liu, B., Tang, Y., Tra_c Distribution over

Equal-Cost-Multi-Pathsusing LRU-based Caching

with Counting Scheme IEEE AINA, 2006.

[6] Martin, R., Menth, M., Hemmkeppler, M.,

Accuracy and Dynamics of Hash-Based Load

Balancing Algorithms for Multipath Internet

Routing. IEEE Conference on Broadband

Communications, Networks and Systems, 2006.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

389

[7] Kandula, S., Katabi, D., Sinha, S., Berger, A.,

Dynamic Load Balancing With-out Packet

Reordering ACM SIGCOMM Computer

Communication Review 54 Volume 37, Number

2, 2007.

[8] Balon, S., Skivee, F., Leduc, G., How Well do

Tra_c Engineering Objective Functions Meet TE

Requirements? IFIP Networking, LNCS 3976, pp.

75{86, 2006.

[9] Lada A. Adamic, Rajan M. Lukose, Bernardo

Huberman, and Amit R. Puniyani Search in

Power-Law Networks, Phys. Rev. E, 64 46135

(2011)

[10] Dejan Kostic, Adolfo Rodriguez, Jeannie

Albrecht, and Amin Vahdat, Bullet: High

Bandwidth Data Dissemination Using an Overlay

Mesh, In Proc. ACM SOSP 2013

[11] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang

Li, and Robert Morris Practical, Distributed

Network Coordinates HotNets 2013

[12] Ayalvadi J. Ganesh, Anne-Marie Kermarrec,

Laurent Massoulie, SCAMP: peer-to-peer

lightweight membership service for large-scale

group communication, In Proc. 3rd Intnl. Wshop

Networked Group Communication (NGC’01),

pages 44–55. LNCS 2233, Springer, 2010

[13] Ayalvadi J. Ganesh, Anne-Marie Kermarrec,

Laurent Massouli: Peer-to-Peer Membership

Management for Gossip-Based Protocols. IEEE

Trans. Computers 52(2):139-149 (2013)

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.

Searchand replication in unstructured peer-to-peer

networks In ICS’02, New York, USA, June 2012

[15] Christos Gkantsidis, Milena Mihail, and Amin

Saberi, Random Walks in Peer-to-Peer Networks,

to appear in IEEE Infocom 2014

[16] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau,

Nick Lanham, and Scott Shenker, Making

Gnutella-like P2P Systems Scalable, In Proc.

ACM SIGCOMM 2003, Karlsruhe, Germany,

Aug 2013.

[17] C. Law and K.-Y. Siu, Distributed construction of

random expander networks, In Proc. IEEE

Infocom 2013

[18] Gopal Pandurangan, Prabhakar Raghavan, and Eli

Upfal, Building low-diameter p2p networks, In

STOC 2011, Crete, Greece, 2011

[19] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong,

Freenet: A distributed anonymous information

storage and retrieval system, In Proc. International

Workshop on Design Issues in Anonymity and

Unobservability, volume 2012 of LNCS, pages

46–66. Springer-Verlag, 2012

[20] Ziv Bar-Yossef, Alexander Berg, Steve Chien,

Jittat Fakcharoenphol, and Dror Weitz,

Approximating Aggregate Queries about Web

Pages via Random Walks, In Proc.VLDB 2014.

VI. Author’s Profile

Dr. Rajdev Tiwari having work

experience of more than 16yr.

Completed phd from Computer

Science in 2012 from Dr. B.R

ambedkar University AGRA.

Completed Master of Computer

Application in 2005 from Indra

Gandhi National Open University. Also completed

Master of Science in 1997 from Dr. Rammanohar Lohia

Awadh University Faizabad

Parul Sirohi persuing M.tech from

Computer Science in 2013 from

Noida Institute of engg. &

Technology, Greater noida.

Completed B.tech in Information

Technology in 2012 from Gyan

Bharti Institute Of Technology

Meerut. My area of interest are Computer Network and

Operating System.

